Hrabina, J., Lazar, J., Hola, M., Cip, O. (2020)

ホーム フォーラム 掲示板 Hrabina, J., Lazar, J., Hola, M., Cip, O. (2020)

  • このトピックは空です。
1件の投稿を表示中 - 1 - 1件目 (全1件中)
  • 投稿者
    投稿
  • #10572 返信
    iltbillie90
    ゲスト

    <p>We provide outcomes of investigation and comparing of spectral homes of molecular iodine transitions on the spectral region of 514.7 nm that are compatible with laser beam volume stabilization and metrology of length. 8 Doppler-broadened transitions that had been not studied in detail just before have been explored with the help of volume tripled Yb-doped roughage lazer, and a few of the most promising outlines were definitely studied in great detail with possibility of making use of them in volume stabilization newest lazer principles. The spectral homes of hyperfine parts (linewidths, signal-to-noises rate) were in contrast to transitions that will be recognized and generally employed for stabilization of rate doubled Nd: YAG laser light on the 532 nm place with the exact same molecular iodine intake. The outer rate doubling set up with waveguide crystal as well as Yb-doped roughage lazer is usually quickly described alongside the noticed outcome of laser growing old.</p>

    <h2>In the event the inline PDF is simply not providing properly, you may down load the PDF file listed here.</h2>

    <p>hola– [1] Mironov, A.V., Privalov, V.E., Savelev, S.K. (1997). Complete determined atlas with the assimilation spectrum of iodine-127 (B-X technique of bands) and complex of courses for those tabulation of iodine product lines. Optics and Spectroscopy, 82 (3), 332-333.</p>

    <div style=”clear:both;”></div><p>- [2] Salami, H., Ross, A.J. (2005). A molecular iodine atlas in ascii set up. Journal of Molecular Spectroscopy, 233 (1), 157-159.</p>

    <p>- [3] Simmons, J.D., Hougen, J.T. (1977). Atlas of I2 range from 19 000 to 18 000 Cm-1. Journal of Research of the National Bureau of Standards, Section A : Physics and Chemistry, 81 (1), 25-80.</p>

    <p>- [4] Cheng, W.Y., Chen, L.S., Yoon, T.H., Hall, J.L., Ye, J. (2002). Sub-Doppler molecular-iodine transitions nearby the dissociation restrict (523-498 nm). Optics Letters, 27 (8), 571-573.</p>

    <p>- [5] Quinn, T.J. (2003). Practical awareness in the definition of the metre, such as advised radiations of other eye volume criteria (2001). Metrologia, 40 (2), 103-133.</p>

    <p>- [6] Balhorn, R., Lebowsky, F., Kunzmann, H. (1972). Frequency stabilization of inside-vanity mirror helium-neon lasers. Applied Optics, 11 (4), 742-744.</p>

    <p>- [7] Nevsky, A.Y., Holzwarth, R., Reichert, et al. (2001). Frequency contrast and complete consistency measurement of I-2-stabilized lasers at 532 nm. Optics Communications, 192 (3-6), 263-272.</p>

    <p>- [8] Petru, F., Popela, B., Vesela, Z. (1993). results and Style and design of compact iodine stabilized He-Ne lasers at lambda=633 nm that has a simple eye-resonator. Measurement Science And Technology, 4 (4), 506-512.</p>

    <p>- [9] Sevcik, R., Guttenova, J. (2007). Primary distance standard modification. In 15th Czech-Polish-Slovak Conference on Wave and Quantum Components of Contemporary Optics, Proc. SPIE 6609.</p>

    <p>- [10] Galzerano, G., Bava, E., Bisi, M., Bertinetto, F., Svelto, C. (1999). Frequency stabilization of regularity-tripled Nd : YAG lasers at 532 nm by frequency modulation spectroscopy technique. IEEE Transactions on Instrumentation and Measurement, 48 (2), 540-543.</p>

    <p>- [11] Nyholm, K., Merimaa, M., Ahola, T., Lassila, A. (2003). Frequency stabilization of your diode-pumped Nd: Yag laser light at 532 nm to iodine by employing thirdharmonic strategy. IEEE Transactions on Instrumentation and Measurement, 52 (2), 284-287.</p>

    <p>- [12] Bartl, J., Guttenova, J., Jacko, V., Sevcik, R. (2007). Circuits for visual occurrence stabilization of metrological lasers. In Measurement 2007 : 6th International Conference on Measurement. Bratislava : Institute of Measurement Science SAS, 131-134.</p>

    <p>- [13] Hrabina, J., Petru, F., Jedlicka, P., Cip, O., Lazar, J. (2007). Purity of iodine tissues and eye consistency move of iodine-stabilized He-Ne lasers. Optoelectronics and Advanced Materials-Rapid Communications, 1 (5), 202-206.</p>

    <p>- [14] Ciddor, P.E., Duffy, R.M. (1983). Two-mode frequency-stabilized He-Ne (633 nm) lasers : Studies of brief- and long term stability. Journal of Physics E : Scientific Instruments, 16 (12), 1223-1227.</p>

    <p>- [15] Rovera, G.D., Ducos, F., Zondy, J.J., Acef, O., Wallerand, J.P., Knight, J.C., Russell, P.S. (2002). Absolute volume dimension of the I-2 stabilized Nd : YAG eye occurrence regular. Measurement Science And Technology, 13 (6), 918-922.</p>

    <p>- [16] Lazar, J., Hrabina, J., Jedlicka, P., Cip, O. (2009). Absolute volume changes of iodine body cells for laser stabilization. Metrologia, 46 (5), 450-456.</p>

    <p>- [17] Hrabina, J., Lazar, J., Hola, M., Cip, O. (2013). Frequency sound homes of lasers for interferometry in nanometrology. Sensors, 13 (2), 2206-2219.</p>

    <p>- [18] Lance, A.L., Seal, W.D., Labaar, F. (1982). Phase sound size devices. ISA Transactions, 21 (4), 37-44.</p>

    <p>- [19] Hrabina, J., Lazar, J., Hola, M., Cip, O. (2013). Investigation of simple-time period amplitude and consistency variances of lasers for interferometry. Measurement Science Review, 13 (2), 63-69.</p>

    <p>- [20] Rerucha, S., Buchta, Z., Sarbort, M., Lazar, J., Cip, O. (2012). Detection of interference period by electronic digital computation of quadrature impulses in homodyne laser light interferometry. Sensors, 12 (10), 14095-14112.</p>

    <p>- [21] Smid, R., Cip, O., Lazar, J. (2008). Precise measurements etalon governed by stabilized rate hair comb. Measurement Science Review, 8 (5), 114-117.</p>

    <p>- [22] Hodges, J.T., Layer, H.P., Miller, W.W., Scace, G.E. (2004). Frequency-stabilized single-function cavity ringdown apparatus for top-conclusion ingestion spectroscopy. Overview of Scientific Instruments, 75 (4), 849-863.</p>

    <p>- [23] Lazar, J., Hola, M., Cip, O., Cizek, M., Hrabina, J., Buchta, Z. (2012). Refractive directory settlement in around-identified interferometric devices. Sensors, 12 (10), 14084-14094.</p>

    <p>- [24] Birch, K.P., Downs, M.J. (1994). Correction for the current edlen formula for those refractive-crawl of atmosphere. Metrologia, 31 (4), 315-316.</p>

    <p>- [25] Lazar, J., Hola, M., Cip, O., Cizek, M., Hrabina, J., Buchta, Z. (2012). Displacement interferometry with stabilization of wavelength in surroundings. Optics Express, 20 (25), 27830-27837.</p>

    <p>- [26] Lazar, J., Cip, O., Cizek, M., Hrabina, J., Buchta, Z. (2011). Standing influx interferometer with stabilization of wavelength on air. tm-Technisches Messen, 78 (11), 484-488.</p>

    <p>- [27] Zhang, J., Lu, Z.H., Menegozzi, B., Wang, L.J. (2006). Implementation of frequency combs from the size of your refractive crawl of air. Analysis of Scientific Instruments, 77 (8).</p>

    <p>- [28] Hrabina, J., Lazar, J., Klapetek, P., Cip, O. (2011). Multidimensional interferometric method for the community probe microscopy nanometrology. Measurement Science And Technology, 22 (9).</p>

    <p>- [29] Cao, H.J., Zang, E.J., Zhao, K., Zhang, X.B., Wu, Y.X., Shen, N.C. (1998). Frequency stabilization of a Nd: YAG lazer to Doppler-broadened queues of iodine in the vicinity of 532 nm. In Conference on Precision Electromagnetic Measurements Digest, 6-10 July 1998. IEEE, 183-184.</p>

    <p>- [30] Lazar, J., Hrabina, J., Sery, M., Klapetek, P., Cip, O. (2012). Multiaxis interferometric displacement size for community probe microscopy. Central European Journal of Physics, 10 (1), 225-231.</p>

    <p>- [31] du Burck, F., Daussy, C., Amy-Klein, A., Goncharov, A.N., Lopez, O., Chardonnet, C., Wallerand, J.P. (2005). Frequency measuring of any Ar+ laser stabilized on small facial lines of molecular iodine at 501.7 nm. IEEE Transactions on Instrumentation and Measurement, 54 (2), 754-758.</p>

    <p>- [32] Wallerand, J.P., Robertsson, L., Ma, L.S., Zucco, M. (2006). Absolute rate measurement of molecular iodine collections at 514.7 nm, interrogated from a frequencydoubled Yb-doped fibre laserlight. Metrologia, 43 (3), 294-298.</p>

    <p>- [33] Osellame, R., Della Valle, G., Chiodo, N., Taccheo, S., Laporta, P., Svelto, O., Cerullo, G. (2008). Lasing in femtosecond laser beam created visual waveguides. Applied Physics A : Materials Science & Processing, 93 (1), 17-26.</p>

    <p>- [34] Chiodo, N., Du Burck, F., Hrabina, J., Candela, Y., Wallerand, J.P., Acef, O. (2013). CW regularity doubling of 1029 nm radiation using sole move large and waveguide PPLN crystals. Optics Communications, 311, 239-244.</p>

    <p>- [35] Chiodo, N., Du-Burck, F., Hrabina, J., Lours, M., Chea, E., Acef, O. (2014). Optical phase locking of two infra-red ongoing influx lasers split up by 100 THz. Optics Letters, 39 (10), 2936-2939.</p>

    <p>- [36] Hrabina, J., Jedlicka, P., Lazar, J. (2008). Options for affirmation and size of purity of iodine body cells for laser light consistency stabilization. Measurement Science Review, 8 (5), 118-121.</p>

    <p>- [37] Fang, H.M., Wang, S.C., Liu, L.C., Cheng, W.Y., Wu, K.Y., Shy, J.T. (2006). Measurement of hyperfine splitting of molecular iodine at 532 nm by doublepassed acousto optic modulator volume shifter. Japanese Journal of Applied Physics, 45, 2776-2779.</p>

    <p>- [38] Vigue, J., Broyer, M., Lehmann, J.C. (1981). Natural magnetic and hyperfine predissociation from the I2 B declare. I. – Theory. Journal de Physique, 42 (7), 937-947.</p>

    <p>- [39] Vigue, J., Broyer, M., Lehmann, J.C. (1981). Natural hyperfine and magnetic predissociation with the I2 B declare. II. – Experiments on hyperfine and purely natural predissociation. Journal de Physique, 42 (7), 949-959.</p>

    <p>- [40] Vigue, J., Broyer, M., Lehmann, J.C. (1981). Natural magnet and hyperfine predissociation with the I2 B status. III. – Experiments on magnetic predissociation. Journal de Physique, 42 (7), 961-978.</p>

    <p>- [41] Pique, J.P., Bacis, R., Hartmann, F., Sadeghi, N., Churassy, S. (1983). Hyperfine predissociation from the B state of iodine investigated thru life time specifications of particular hyperfine sublevels. Journal de Physique, 44 (3), 347-351.</p>

1件の投稿を表示中 - 1 - 1件目 (全1件中)
返信先: Hrabina, J., Lazar, J., Hola, M., Cip, O. (2020)
あなたの情報: